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Problem 1

(a) Although we’ll use this expression in the case where the n-fold commutator terminates exactly,
its trucated form is used in coupled-cluster theory (electronic structure). It is called the
Hadamard formula, and is an example of a Baker-Campbell-Hausdorff expansion.

First we’re going to consider the Taylor expansion of F (λ) = e−λBAeλB around 0.

F (λ) = F (0) + F ′(0)λ+ F ′′(0)
λ2

2
+ · · · (1)

=
∞∑
n=0

λn

n!
F (n)(0) (2)

From this, we see that we want to show that F (n)(0) = [B,A]n. We’ll do this in two steps.
First we’ll posit (and prove) a general recursion relation for derivatives of F (λ).1 It should
be clear that the λ will always be in the exponents, so in order to get the desired results for
F (n−1), we need to find something that looks like

F (n)(λ) = eλB [B,A]n e
−λB (3)

Now let’s suppose that this holds for some order n. We want to show that it also hold for
n+ 1. That just involves taking the derivative:

F (n+1)(λ) =
d

dλ
eλB [B,A]n e

−λB (4)

= BeλB [B,A]n e
−λB + eλB [B,A]n (−B)e−λB (5)

= eλB (B [B,A]n − [B,A]nB) e−λB (6)

= eλB [B, [B,A]n] e−λB (7)

= eλB [B,A]n+1 e
−λB (8)

where we’ve used the fact that B commutes with e±λB . This result means that if the expres-
sion (3) holds true for any value of n, then it will hold for all subsequent values of n.

1You may be asking “How the heck would I come up with that?” It’s really not as bad as you’d fear. First, we know
we have to show this for an infinite set of derivatives, so proof by induction is a likely tool. To guess the specific formula,
just look at the first few orders. Equivalently, you could show that d

dλ
e−λBg(A, B)eλB = e−λB [B, g(A, B)]eλB for

any function g(A, B), and you’d be able to make the create the recursion formula.
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Note that this alone is not sufficient to complete our proof. We showed that if equation (3) is
true for any n, then it is true for all later n. But it doesn’t show that there is any n for which
it is true. Now we have to show that.

Perhaps the easiest way to do this would be to show that it is satisfied for n = 1 (the math is
similar to what is shown above). However, I’m going to instead show that [B,A]0 = A.

The recursive definition of the n-fold commutator is

[B,A]n = [B, [B,A]n−1] (9)

Let’s replace n with 1 in the above:

[B,A]1 = [B, [B,A]0] (10)

Of course, [B,A]1 = [B,A], so we can identify [B,A]0 = A. Finally, we use the fact that

F (0)(λ) = F (λ) = eλBAe−λB = eλB [B,A]0e−λB (11)

So our recursion relation holds fold n = 0, and it holds for any n > 0. Plugging λ = 0 into
equation (3):

F (n)(0) = [B,A]n (12)

Putting that back into our Taylor expansion, we see that we have shown

eλBAe−λB =
∑
n

[B,A]n
λn

n!
(13)

One of the tricks with this expansion is that it terminates for certain operators. For example,
the commutator of p̂ with x̂ is a constant. But any operator commutes with a constant, giving
a commutator of zero for the next n in the n-fold commutator.

(b) Let’s call our tranlated state |ψa〉. We know that

|ψa〉 = T (a) |ψ〉 = e−ip̂a/~ |ψ〉 (14)

〈ψa| = 〈ψ|T †(a) = 〈ψ| eip̂a/~ (15)

We’ll start by looking at the expectation value of p̂ in the translated state. By definition, this
is

〈p̂〉 = 〈ψa|p̂|ψa〉 (16)

=
〈
ψ
∣∣∣eip̂a/~p̂e−ip̂a/~

∣∣∣ψ〉 (17)

Since e±ip̂a/~ is a function of only the operator p̂, it will commute with p̂. That gives us:

〈p̂〉 =
〈
ψ
∣∣∣p̂eip̂a/~e−ip̂a/~

∣∣∣ψ〉 (18)

= 〈ψ|p̂|ψ〉 (19)
= p0 (20)
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where the last equality invoked the problem set’s definition of p0.

Now for the expectation value of x̂:

〈x〉 = 〈ψa|x̂|ψa〉 (21)

=
〈
ψ
∣∣∣eip̂a/~x̂e−ip̂a/~

∣∣∣ψ〉 (22)

We notice that if we define λ = ia/~, B = p̂, and A = x̂, we recover the expression from part
(a). As mentioned above, the n-fold commutator of x̂ and p̂ is zero above a certain order. To
show this exactly:

[p̂, x̂]1 = [p̂, x̂] = −i~ (23)
[p̂, x̂]2 = [p̂, [p̂, x̂]] (24)

= [p̂,−i~] = 0 (25)

In general, [A, 0] = 0, so all higher orders will also be zero. putting this together with the
expectation value of x̂ in the translated state, we get:

〈x〉 =

〈
ψ

∣∣∣∣∣
∞∑
n=0

(ia/~)n

n!
[p̂, x̂]n

∣∣∣∣∣ψ
〉

(26)

=

〈
ψ

∣∣∣∣∣x̂+
ia

~
(−i~) +

∞∑
n=2

(ia/~)n

n!
[p̂, x̂]n

∣∣∣∣∣ψ
〉

(27)

We’ve already shown that [p̂, x̂]n = 0 for n ≥ 2, so this becomes:

〈x〉 = 〈ψ|x̂+ a+ 0|ψ〉 (28)
= 〈ψ|x̂|ψ〉+ 〈ψ|a|ψ〉 (29)
= x0 + a (30)

Problem 2

(a) We’re to find FC(n2 ← 0), so let’s start off by getting that expressed in Dirac notation:

FC(n2 ← 0) =
∣∣∣∣∫

R
dxψ(b)

n2

∗
(x)ψ(a)

0 (x)
∣∣∣∣2 (31)

=
∣∣∣∣∫

R
dx
〈
ψ(b)
n2

∣∣∣x〉〈x∣∣∣ψ(a)
0

〉∣∣∣∣2 (32)

=
∣∣∣〈ψ(b)

n2

∣∣∣ψ(a)
0

〉∣∣∣2 (33)

Now the trick is going to be to describe the (a) states in terms of the (b) states, or vice versa.
These form two equivalent lines of reasoning; I’m only going to step through the reasoning
involved in finding the (b) states with respect to the (a) states.
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The potentials from the two curves are only different in that the (b) potential is shifting in
energy by E (which doesn’t change the wavefunction) and shifted in x by x0. So the wavefunc-
tions for the (b) states are given by the translation of the (a) states by x0. Mathematically:∣∣∣ψ(b)

n

〉
= T (x0)

∣∣∣ψ(a)
n

〉
= e−ip̂x0/~

∣∣∣ψ(a)
n

〉
(34)

Now I’m going to switch notation slightly: all kets will be labeled according to the value of
n for the state, and all kets will be taken to be representing (a) states. In this case, the
Franck-Condon factor becomes:

FC(n2 ← 0) =
∣∣〈n2

∣∣T †(x0)
∣∣0〉∣∣2 (35)

=
∣∣∣〈n2

∣∣∣eip̂x0/~
∣∣∣0〉∣∣∣2 (36)

=
∣∣∣〈n2

∣∣∣ei2√m~ω/2(a†−a)x0/~
∣∣∣0〉∣∣∣2 (37)

=
∣∣∣〈n2

∣∣∣e−λx0a
†+λx0a

∣∣∣0〉∣∣∣2 (38)

As we showed in problem 1, the 2-fold commutator of x̂ and p̂ is zero. So we use the “useful
identity” given in the problem:

FC(n2 ← 0) =
∣∣∣〈n2

∣∣∣e−λx0a
†
eλx0ae−

1
2 [−λx0a

†,λx0a]
∣∣∣0〉∣∣∣2 (39)

=
∣∣∣〈n2

∣∣∣e−λx0a
†
eλx0ae

1
2λ

2x2
0[a

†,a]
∣∣∣0〉∣∣∣2 (40)

=
∣∣∣〈n2

∣∣∣e−λx0a
†
eλx0ae−

1
2λ

2x2
0

∣∣∣0〉∣∣∣2 (41)

=
∣∣∣e− 1

2λ
2x2

0

〈
n2

∣∣∣e−λx0a
†
eλx0a

∣∣∣0〉∣∣∣2 (42)

Now we’ll start doing the series expansions of the operators. Let’s begin with the lowering
operator, a:

FC(n2 ← 0) =

∣∣∣∣∣e− 1
2λ

2x2
0

〈
n2

∣∣∣∣∣e−λx0a
†
∞∑
i=0

(λx0a)i

i!

∣∣∣∣∣0
〉∣∣∣∣∣

2

(43)

However, the lowering operator acting one or more times on the ket |0〉 gives zero, and thus
no contribution to the sum. The only term which survives is when i = 0. Thus eλx0a |0〉 = |0〉.
We use that, and then expand the sum for the raising operator:

FC(n2 ← 0) =
∣∣∣e− 1

2λ
2x2

0

〈
n2

∣∣∣e−λx0a
†
∣∣∣0〉∣∣∣2 (44)

=

∣∣∣∣∣∣e− 1
2λ

2x2
0

〈
n2

∣∣∣∣∣∣
∞∑
j=0

(−λx0a
†)j

j!

∣∣∣∣∣∣0
〉∣∣∣∣∣∣

2

(45)

=

∣∣∣∣∣∣e− 1
2λ

2x2
0

∞∑
j=0

(−λx0)j

j!

〈
n2

∣∣∣a†j∣∣∣0〉
∣∣∣∣∣∣
2

(46)

4



We can either thing of a† as lowering to the left or raising on the right. I will treat it as a
raising operator on the right, although the two analyses are equivalent:

FC(n2 ← 0) =

∣∣∣∣∣∣e− 1
2λ

2x2
0

∞∑
j=0

(−λx0)j

j!

〈
n2

∣∣∣√j!∣∣∣j〉
∣∣∣∣∣∣
2

(47)

=

∣∣∣∣∣∣e− 1
2λ

2x2
0

∞∑
j=0

(−λx0)j√
j!

〈n2|j〉

∣∣∣∣∣∣
2

(48)

=
∣∣∣∣e− 1

2λ
2x2

0
(−λx0)n2

√
n2!

∣∣∣∣2 (49)

where we have used the fact that 〈n2|j〉 acts as the Kronecker delta δn2,j . Simplifying:

FC(n2 ← 0) = e−λ
2x2

0
(λx0)2n2

n2!
(
(−1)2

)n
(50)

= e−λ
2x2

0
(λx0)2n2

n2!
(51)

(b) Let’s plug the appropriate numbers into the equations for λ and x0. We begin with the reduced
mass for I2:

µ =
mI

2
=

126.9 amu
2

· 1.66054× 10−27 kg
amu

= 1.054× 10−21 kg (52)

We also want the energy ~ω (when ω is reported in units of energy, we really mean ~ω):

~ω = 126 cm−1 · 1.9864× 10−23 J
cm−1

= 2.503× 10−21 J (53)

Now let’s do the entirety of λ:

λ =
√
µω

2~
=

√
µ(~ω)
2~2

=

√
(1.054 kg)(2.503× 10−21 J)

2(1.504× 10−34 J · s)2
(54)

=

√
1.252× 1022

kg
J · s2

=

√
1.252× 1022

kg
(kg ·m2/s2) · s2

(55)

= 1.119× 1011 m−1 (56)

Finally, let’s determine x0:

x0 = 3.204 Å− 2.666 Å = 5.38× 10−11 m (57)

This means that the quantity λx0 is unitless (it had better be, if it shows up as thew argument
of an exponential) and is given by λx0 = 6.02. Plugging all of this into the equation for the
Franck-Condon factors, we obtain the expression:

FC(n2 ← 0) = e−(λx0)
2 (λx0)2n2

n2!
= e−36.2 (36.2)n2

n2!
(58)
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The energies for each excited state level will be given by the term energy plus n2 times the
energy level spacing:

E(n2) = Te + n2~ω (59)

= 15769 cm−1 + n2(126 cm−1) (60)

This properly accounts for the zero point energy, since the ZPEs are the same in both states
(in this rough harmonic oscillator approximation we’ve made). The plot of the Franck-Condon
intensities is given in 1. The strongest transition corresponds to n2 = 36 which gives energy
E = 20305 cm−1 = 4.033× 10−19 J.

Figure 1: Plot of Franck-Condon intensities for a rough approximation to the I2 B ← X vibronic
transition. The inset gives a close-up near the peak, in order to identify the maximum value of n2.

6



Problem 3

(a) Let’s start out by expanding the potential: this should make it easier for us to take the
derivatives:

V =
1
2
k1

(
(x2 − x1)2 + (x3 − x2)2

)
+

1
2
k2

(
(y1 + y3 − 2y2)2 + (z1 + z3 − 2z2)2

)
(61)

=
1
2
(
k1

(
2x2

2 + x2
1 − 2x1x2 + x2

3 − 2x2x3

)
+k2

(
y2
1 + y2

3 + 4y2
2 + 2y1y3 − 4y1y2 − 4y2y3

)
+k2

(
z2
1 + z2

3 + 4z2
2 + 2z1z3 − 4z1z2 − 4z2z3

))
(62)

The first derivatives are in figure 2. By grouping the derivatives in the order x1, x2, x3, y1,
. . ., z3, the matrix of second derivatives gives U as shown in figure 3, where we have used
Uij = Vij/

√
mimj . Finally, we note that m1 = m3 = mO and m2 = mC , which gives us the

matrix for U as shown in figure 4.

∂V

∂x1
= k1(x1 − x2)

∂V

∂x2
= k1(2x2 − x1 − x3)

∂V

∂x3
= k1(x3 − x2)

∂V

∂y1
= k2(y1 + y3 − 2y2)

∂V

∂y2
= 2k2(2y2 − y1 − y3)

∂V

∂y3
= k2(y1 + y3 − 2y2)

∂V

∂z1
= k2(z1 + z3 − 2z2)

∂V

∂z2
= 2k2(2z2 − z1 − z3)

∂V

∂z3
= k2(z1 + z3 − 2z2)

Figure 2: First derivatives of the potential.

U =



k1
m1

−k1√
m1m2

0 0 0 0 0 0 0
−k1√
m1m2

2k1
m2

−k1√
m2m3

0 0 0 0 0 0
0 −k1√

m2m3

k1
m3

0 0 0 0 0 0
0 0 0 k2

m1

−2k2√
m1m2

k2√
m1m3

0 0 0
0 0 0 −2k2√

m1m2

4k2
m2

−2k2√
m2m3

0 0 0
0 0 0 k2√

m1m3

−2k2√
m2m3

k2
m3

0 0 0
0 0 0 0 0 0 k2

m1

−2k2√
m1m2

k2√
m1m3

0 0 0 0 0 0 −2k2√
m1m2

4k2
m2

−2k2√
m2m3

0 0 0 0 0 0 k2√
m1m3

−2k2√
m2m3

k2
m3



Figure 3: Second derivatives of the potential, with mass weightings.

Fortunately, that matrix is block diagonal, so we can diagonalize each of the 3 × 3 blocks
instead of the whole 9 × 9 mess. In addition, the lower two blocks are identical, so we only
need to diagonalize them once!
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U =



k1
mO

−k1√
mOmC

0 0 0 0 0 0 0
−k1√
mOmC

2k1
mC

−k1√
mCmO

0 0 0 0 0 0
0 −k1√

mCmO

k1
mO

0 0 0 0 0 0
0 0 0 k2

mO

−2k2√
mOmC

k2
mO

0 0 0
0 0 0 −2k2√

mOmC

4k2
mC

−2k2√
mCmO

0 0 0
0 0 0 k2

mO

−2k2√
mCmO

k2
mO

0 0 0
0 0 0 0 0 0 k2

mO

−2k2√
mOmC

k2
mO

0 0 0 0 0 0 −2k2√
mOmC

4k2
mC

−2k2√
mCmO

0 0 0 0 0 0 k2
mO

−2k2√
mCmO

k2
mO



Figure 4: Second derivatives of the potential, with masses labelled by atom associated.

Before we start on this diagonalization procedure, let’s make some predictions: we know that
we should get 5 eigenvalues of zero. Since the matrix is block diagonal (and the degree is small
enough) we can predict how many zero eigenvalues each block should have. Each block will
have 3 eigenvalues total. Since the bottom two blocks are identical, they must have the same
eigenvalues. So either they have 2 zero eigenvalues and the top block has 1 zero eigenvalue (to
make 5 total), or the bottom blocks have 1 zero eigenvalue and the top has 3 zero eigenvalues.
Since the top block isn’t the zero matrix, we don’t expect the latter case to occur. Therefore,
we already know that we’re looking for two eigenvalues of zero for the bottom two blocks, and
one eigenvalue of zero for the top block.

By far, it is easiest to calculate these eigenvalues and eigenvectors using a computer algebra
system. However, I want to show you some tricks to do this by hand. Then I’ll check my
results using Maxima.

The main idea is to find ways to rename variables such that the system looks less intimidating.
Once you’ve got that, it’s just a matter of diagonalizing a 3x3 matrix. We’ll start with the
upper block.

We’ll start by taking out a factor of k1/mO from the upper block matrix:

Utop =


k1
mO

−k1√
mOmC

0
−k1√
mOmC

2k1
mC

−k1√
mCmO

0 −k1√
mCmO

k1
mO

 =
k1

mO


1 −

√
mO

mC
0

−
√

mO

mC
2mO

mC
−
√

mO

mC

0 −
√

mO

mC
1

 (63)

We’ll call the factored matrix U (1)
top and note how its eigenvalues λ compare to the eigenvalues
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of Utop, which we’ll call λ′. Suppose we have an eigenvector xλ′ such that:

Utopxλ′ = λ′xλ′ (64)(
k1

mO

)
U

(1)
topxλ′ = (65)

U
(1)
topxλ′ =

mO

k1
λ′xλ′ (66)

So U (1)
top has the same eigenvectors as Utop with eigenvalues λ = mO

k1
λ′. If we solve the eigenequa-

tion for one matrix, we have the solution for the other.

Looking at the form of U (1)
top, we see that it will look simpler if we define b =

√
mO

mC
. Then the

matrix becomes:

U
(1)
top =

 1 −b 0
−b 2b2 −b
0 −b 1

 (67)

That doesn’t look so scary. Let’s find its eigenvalues:

0 = det

λ− 1 b 0
b λ− 2b2 b
0 b λ− 1

 (68)

= (λ− 1)2
(
λ− 2b2

)
− 2b2 (λ− 1) (69)

= λ3 − 2λ2 + λ− 2b2λ2 + 4b2λ− 2b2 − 2b2λ+ 2b2 (70)

= λ3 − 2(1 + b2)λ2 + (1 + 2b2)λ (71)

= λ
(
λ2 − 2(1 + b2)λ+ (1 + 2b2)

)
(72)

So we have found one eigenvalue of λ = 0. We know that this is not one of the vibrational
modes, so we’re not going to worry about it. When λ is non-zero, we’ll have:

λ =
2(1 + b2)±

√
4(1 + b2)2 − 4(1 + 2b2)

2
(73)

= 1 + b2 ±
√

(1 + b2)2 − 1− 2b2 (74)

= 1 + b2 ±
√

1 + 2b2 + b4 − 1− 2b2 (75)

= 1 + b2 ± b2 (76)

So this means that λ = 1 or λ = 1 + 2b2. Translating this back to λ′, the eigenvalues of our
actual matrix, we obtain either

λ′ =
k1

mO
(1) =

k1

mO
(77)
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or

λ′ =
k1

mO
(1 + 2b2) (78)

=
k1

mO

(
1 + 2

mO

mC

)
=

k1

mO

mC + 2mO

mC
(79)

= k1
mC + 2mO

mOmC
(80)

= k1
M

mOmC
(81)

where M is the total mass of the carbon dioxide molecule.

The eigenvalues give us the force constants, and therefore they are proportional to the square
root of the frequency. That means that we can use this to identify which modes these are even
before getting their eigenvalues. We already know to expect that the modes from this matrix
will be the symmetric and antisymmetric stretch (two reasons: this matrix is associated with
motion along the molecular axis, as are those modes; also, we know that the two eigenvalues
from the bottom blocks have to be the same and therefore represent the degenerate bending
modes).

Taking the ratio of the second eigenvalue to the first, we find:√
k1M/(mOmC)

k1/mO
=

√
M

m− C
≈ 1.9 (82)

This is near the ratio of ν3 to ν1.2 Therefore we expect that the first eigenvalue will be
associated with the symmetric stretch and that the second eigenvalue will be associated with
antisymmetric stretch.

Now let’s actually find the eigenvectors associated with each eigenvalue. Since the eigenvectors
are identical for Utop and U

(1)
top, we’ll use the latter to find the eigenvectors.

First we’ll find the eigenvector associated with λ = 1 (λ′ = k1
mO

):0 b 0
b 1− 2b2 b
0 b 0

x1

x2

x3

 =

0
0
0

 (83)

This immediately gives us two equations:

0 = x2 (84)

0 = bx1 + (1− 2b2)x2 + bx2 (85)

Plugging the first of those equations into the second, we find that the (normalized) eigenvector
is:

xλ=1 =

 1/
√

2
0

−1/
√

2

 (86)

2The fact that it isn’t all that close indicates the weakness of this potential as an approximation.
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As we expected, this gives us the symmetric stretch. We can read this vector as saying that
the two oxygen atoms are moving opposite directions with equal magnitudes of forces acting
on them, and that the carbon atom isn’t moving with respect to the center of mass. Since
these represent the x components of the vectors, all the motion is along the x direction. This is
exactly what we would expect in order to describe the symmetric stretch of CO2. Note that the
masses don’t show up in the eigenvector. This doesn’t mean that the motion is independent
of mass, however: the eigenvalue is in terms of the masses.

Now let’s get the eigenvector for λ = 1 + 2b2 (or λ′ = k1
M

mOmC
):2b2 b 0

b 1 b
0 b 2b2

x1

x2

x3

 =

0
0
0

 (87)

From this, we obtain the equations:

0 = 2b2x1 + bx2 (88)
0 = bx1 + x2 + bx3 (89)

The first of these gives us
x2 = −2bx1 (90)

Plugging equation (90) into equation (89), we obtain:

0 = bx1 − 2bx1 + bx3 (91)
x3 = x1 (92)

Hence we find our unnormalized eigenvector to be

xλ=1+2b2 =

 A
−2Ab
A

 (93)

Finding the normalization constant:

A =
(
12 + (−2b)2 + 12

)−1/2
(94)

=
(
2 + 4b2

)−1/2
(95)

Plugging in the definition of b, we obtain

A =
(

2 + 4
mO

mC

)−1/2

(96)

=
(

2mC + 4mO

mC

)−1/2

(97)

=
√

mC

2(mC + 2mO)
(98)

=
√
mC

2M
(99)
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Now we’ll put the normalization constant into the unnormalized eigenvector we found in equa-
tion (93):

xλ=1+2b2 =
√
mC

2M

 1
−2
√

mO

mC

1

 (100)

=
1√
2M

 √
mC

−2
√
mO√
mC

 (101)

This is the antisymmetric stretch. It represents motion in the x direction, with the oxygen
atoms moving the same direction with the same magnitude, and the carbon atom moving in
the opposite direction with a magnitude weighted by the masses. The weighting comes into
play because the center of mass has to remain constant.
We can use a similar process for the bottom block matrices. We already know that these will
contribute the two bend modes, so let’s go ahead and see how those look:

U
(1)
bottom =

mO

k2
Ubottom (102)

=


1 −2

√
mO

mC
1

−2
√

mO

mC
4mO

mC
−2
√

mO

mC

1 −2
√

mO

mC
1

 (103)

=

 1 −2b 1
−2b 4b2 −2b

1 −2b 1

 (104)

Finding the eigenvalues:

0 = det

λ− 1 2b −1
2b 4b2 − λ 2b
−1 2b λ− 1

 (105)

= (λ− 1)2(λ− 4b2)− 8b2 − 8b2(λ− 1)− (λ− 4b2) (106)

= λ3 − 2λ2 + λ− 4b2λ2 + 8b2λ− 4b2 − 8b2 − 8b2λ+ 8b2 − λ+ 4b2 (107)

= λ3 − 2λ2 − 4b2λ2 (108)

= λ2(λ− (2 + 4b2)) (109)

Therefore either λ = 0 or λ = 2+4b2. The former case is uninteresting to us (not a vibrational
mode), but let’s look more carefully at the latter:

λ′ =
k2

mO

(
2 + 4

mO

mC

)
(110)

= 2k2

(
mC + 2mO

mCmO

)
(111)

= 2k2

(
M

mCmO

)
(112)
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Now let’s find its associated eigenvector:1 + 4b2 2b −1
2b 2 2b
−1 2b 1 + 4b2

x1

x2

x3

 =

0
0
0

 (113)

This gives us the equations

0 = (1 + 4b2)x1 + 2bx2 − x3 (114)
0 = bx1 + x2 + bx3 (115)

The first of these equations gives us x3 = 2bx2 + (1 + 4b2)x1, which we’ll plug into the second
equation in order to get an expression for x2 in terms of x1:

0 = bx1 + x2 + b(2bx2 + (1 + 4b2)x1) (116)

= (1 + 2b2)x2 + 2b(1 + 2b2)x1 (117)
x2 = −2bx1 (118)

Now we plug that result for x2 back into the second equation to get x3 in terms of x1:

0 = bx1 − 2bx1 + bx3 (119)
x3 = x1 (120)

So our unnormalized vector is

xλ=2+4b2 =

 A
−2bA
A

 (121)

The normalization constant is easily shown to be

A =
(
2 + 4b2

)−1/2
(122)

=
√
mC

2M
(123)

So, finally, the eigenvector is

xλ=2+4b2 =
1√
2M

 √
mC

−2
√
mO√
mC

 (124)

These correspond to the bends in either the y direction or the z direction. Both oxygen atoms
move in the same direction with the same magnitude, and the carbon atom moves in the
opposite direction with magnitude weighted to keep the center of mass constant.

If you’re wondering why it is that (within the directional subspace) the bends have the same
eigenvectors as the asymmetric stretch, the reason is that both types of modes have essentially
the same description if you ignore direction: the oxygen atoms move in the same direction
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with equal magnitude, and the carbon atom moves in the other direction with a magnitude
that keeps the center of mass constant.

I’ve given these eigenvectors in their subspaces. The actual eigenvectors should by 9-dimensional.
Since most of those will be zeros, I’ve left them out. The symmetric and antisymmetric modes
should have the given values in the first three places, then six zeros following them. The bend
in the y direction should have the given vector with three zeros before and three zeros after.
The bend in the z direction should be preceded by six zeros.

(b) Pretty much the only reasonable way to do this part is with a computer’s help (there’s no
interesting math to learn from it). It’s a good chance to learn how to use a spreadsheet for
simple programs: make a column each for n1, n2, and n3. Create an energy column which
calculates E = ~(ω1(n1 + 1/2) +ω2(n2 + 1) +ω3(n3 + 1/2)). The n2 has 1 added to it, instead
of 1/2, to account for both of the equivalent bend modes. Sort by the energy column, and
there’s your answer (just make sure you allowed enough excitations — at least 4 — in each
mode).

Level (n1, n2, n3) En
1 (0, 0, 0) 2545.5
2 (0, 1, 0) 3217.5
3 (0, 2, 0) 3889.5
4 (1, 0, 0) 3896.5
5 (0, 3, 0) 4561.5
6 (1, 1, 0) 4568.5
7 (0, 0, 1) 4941.5
8 (0, 4, 0) 5233.5
9 (1, 2, 0) 5240.5
10 (2, 0, 0) 5247.5

Table 1: List of 10 lowest energy states (with zero point energy) of the CO2 oscillator, with number
of quanta of excitation in each normal mode
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