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Problem 1

(a) First we calculate the density operator for this ensemble. By definition, the density operator
is

ρ̂ =
∑

i

wi |αi〉 〈αi| (1)

where wi is a weighting factor. In the specific case we are given for this problem, the states
|αi〉 are either |Sz; +〉 or |Sx; +〉, with associated weights 75% and 25%, respectively. Plugging
this in:

ρ̂ =
3
4
|Sz; +〉 〈Sz; +|+

1
4
|Sx; +〉 〈Sx; +| (2)

Plugging that into the |±〉 basis, we obtain:

ρ̂ =
1
4

(
3 |+〉 〈+|+ 1√

2
(|+〉+ |−〉) 1√

2
(〈+|+ 〈−|)

)
(3)

=
1
4

(
3 |+〉 〈+|+ 1

2
(|+〉 〈+|+ |+〉 〈−|+ |−〉 〈+|+ |−〉 〈−|)

)
(4)

=
7
8
|+〉 〈+|+ 1

8
|+〉 〈−|+ 1

8
|−〉 〈+|+ 1

8
|−〉 〈−| (5)

From this, we can immediately write the matrix version in the |±〉 basis:

ρ̂ =̇
(

7/8 1/8
1/8 1/8

)
(6)

Now for ensemble averages. We have equivalent two ways of doing this:

[Â] =
∑

i

wi

〈
αi

∣∣∣Â∣∣∣αi

〉
(7)

[Â] = tr
(
ρ̂Â
)

(8)
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Using the first technique:

[Sx] =
3
4
〈Sz; +|Sx|Sz; +〉+

1
4
〈Sx; +|Sx|Sx; +〉 (9)

=
3
4
0 +

1
4

~
2

=
~
8

(10)

[Sy] =
3
4
〈Sz; +|Sy|Sz; +〉+

1
4
〈Sx; +|Sy|Sx; +〉 (11)

=
3
4
0 +

1
4
0 = 0 (12)

[Sz] =
3
4
〈Sz; +|Sz|Sz; +〉+

1
4
〈Sx; +|Sz|Sx; +〉 (13)

=
3
4

~
2

+
1
4
0 =

3~
8

(14)

Using the second technique:

[Sx] = tr
(

~
16

(
7 1
1 1

)(
0 1
1 0

))
(15)

=
~
16

tr
(

1 7
1 1

)
=

~
8

(16)

[Sy] = tr
(
i~
16

(
7 1
1 1

)(
0 −1
1 0

))
(17)

=
i~
16

tr
(

1 −7
1 −1

)
= 0 (18)

[Sz] = tr
(

~
16

(
7 1
1 1

)(
1 0
0 −1

))
(19)

=
~
16

tr
(

7 −1
1 −1

)
=

3~
8

(20)

(b) We begin by calculating the density operator for this ensemble.

ρ̂ =
∑

i

wi |αi〉 〈αi| (21)

=
1
2
|ψ1〉 〈ψi|+

1
2
|ψ2〉 〈ψ2| (22)

=
1
2

(
1
2

(|0〉+ |1〉) (〈0|+ 〈1|) +
1
2

(|1〉+ |2〉) (〈1|+ 〈2|)
)

(23)

=
1
4

((|0〉 〈0|+ |1〉 〈0|+ |0〉 〈1|+ |1〉 〈1|) + (|1〉 〈1|+ |1〉 〈2|+ |2〉 〈1|+ |2〉 〈2|)) (24)

=
1
4

(|0〉 〈0|+ |1〉 〈0|+ |0〉 〈1|+ 2 |1〉 〈1|+ |1〉 〈2|+ |2〉 〈1|+ |2〉 〈2|) (25)

Although the space of harmonic oscillator energy eigenstates is of infinite (but countable)
dimension, this specific system is fully described by a basis of only the three lowest energy
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states (|0〉, |1〉, and |2〉). So we give the density matrix represented in that subspace:

ρ̂ =̇

1/4 1/4 0
1/4 1/2 1/4
0 1/4 1/4

 (26)

Now let’s calculate the ensemble’s averaged energy. We know the energy eigenvalues of the
harmonic oscillator, so we can immediately write down the matrix representation of the Hamil-
tonian in this subspace:

[E] = tr(ρ̂Ĥ) (27)

= tr

1
4

1 1 0
1 2 1
0 1 1

 ~ω

1/2 0 0
0 3/2 0
0 0 5/2

 (28)

=
~ω
8

tr

1 3 0
1 6 5
0 3 5

 =
12~ω

8
=

3~ω
2

(29)

The final question we need to answer is whether this energy differs from a totally incoherent
ensemble with the same populations. That is to say, from an ensemble where each state
{|0〉 , |1〉 , |2〉} contributes independently to the ensemble, with probability corresponding to its
probability in the ensemble given in the problem.

So the first this we need to do is find the probability of finding each individual state in the
ensemble. This is given by:

Pn =
∑

i

wi |〈n|αi〉|2 (30)

For this ensemble:

Pn =
1
2

∣∣∣∣〈n|( 1√
2

(|0〉+ |1〉)
)∣∣∣∣2 +

1
2

∣∣∣∣〈n|( 1√
2

(|1〉+ |2〉)
)∣∣∣∣2 (31)

=
1
4

(
|〈n|0〉+ 〈n|1〉|2 + |〈n|1〉+ 〈n|2〉|2

)
(32)

Plugging in the values of n:

Pn=0 =
1
4

(
|〈0|0〉+ 〈0|1〉|2 + |〈0|1〉+ 〈0|2〉|2

)
=

1
4

(33)

Pn=1 =
1
4

(
|〈1|0〉+ 〈1|1〉|2 + |〈1|1〉+ 〈1|2〉|2

)
=

1
2

(34)

Pn=2 =
1
4

(
|〈2|0〉+ 〈2|1〉|2 + |〈2|1〉+ 〈2|2〉|2

)
=

1
4

(35)

So now we want the density matrix of an ensemble made up of 25% |0〉, 50% |1〉, and 25% |2〉.
It’s density operator is given by:

ρ̂ =
1
4
|0〉 〈0|+ 1

2
|1〉 〈1|+ 1

4
|2〉 〈2| (36)
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We represent it in this basis by the matrix

ρ̂ =̇

1/4 0 0
0 1/2 0
0 0 1/4

 (37)

Now we calculate the ensemble average of energy for this modified ensemble:

[E] = tr(ρ̂Ĥ) = tr

~ω
8

1 0 0
0 2 0
0 0 1

1 0 0
0 3 0
0 0 5

 (38)

=
~ω
8

tr

1 0 0
0 6 0
0 0 5

 =
12~ω

8
=

3~ω
2

(39)

So the fully decoherent ensemble has the same ensemble average energy as the ensemble with
coherences.

Problem 2

(a) First, let’s recall how we express a coordinate q and momentUM p in terms of the creation
and annihilation operators:

q =

√
~

2mω
(
a† + a

)
(40)

p = i

√
m~ω

2
(
a† − a

)
(41)

Let’s calculate Lz using those:

Lz = xpy − ypx (42)

= i

√
~

2mω

√
m~ω

2
(
(a†x + ax)(a†y − ay)− (a†y + ay)(a†x − ax)

)
(43)

= i
~
2
(
(a†xa

†
y + axa

†
y − a†xay − axay)− (a†ya

†
x + aya

†
x − a†yax − ayax)

)
(44)

= i
~
2
(2axa

†
y − 2a†xay) (45)

= i~(axa
†
y − a†xay) (46)

In doing this, we have made use of the fact that creation/annihilation operators from one
subspace (x or y) commute with operators from the other subspace. If that doesn’t seem
obvious, it can be easily determined from the definitions of the creation and annihilation
operators in terms of positions and momenta.
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Now let’s calculate the commutator [H,Lz]:

[H,Lz] = [~ω(Nx +Ny + 1), Lz] (47)

[H,Lz] = ~ω[Nx +Ny, i~(axa
†
y − a†xay)] + ~ω[1, Lz] (48)

= i~2ω
(
[Nx, axa

†
y]− [Nx, a

†
xay] + [Ny, axa

†
y]− [Ny, a

†
xay]

)
(49)

= i~2ω
(
([Nx, ax]a†y + a†y[Nx, ax])− (−[Nx, a

†
x]ay − ay[Nx, a

†
x])+ (50)

(−ax[Ny, a
†
y]− [Ny, a

†
y]ax)− (a†x[Ny, ay] + [Ny, ay]a†x)

)
(51)

= i~2ω
(
2axa

†
y − 2a†xay − 2axa

†
x + 2aya

†
x

)
(52)

= 0 (53)

(b) In order to find the simultaneous eigenkets of Ĥ and L̂z, we’ll start out by representing those
operators as matrices. Right now, I’ll define the basis B = {|0, 0〉 , |1, 0〉 , |0, 1〉}. The order, in
particular, is important. This basis will be used for the rest of this problem.

The matrix representation of Ĥ in B is trivial:

Ĥ =̇ ~ω

1 0 0
0 2 0
0 0 2

 (54)

It takes a little more work to get the matrix representation of L̂z. First we operate of each of
the kets with L̂z = i~(axa

†
y − a†xay):

i~(axa
†
y − a†xay) |0, 0〉 = 0 (55)

i~(axa
†
y − a†xay) |1, 0〉 = i~(

√
1
√

0 + 1 |0, 1〉+ 0) = i~ |0, 1〉 (56)

i~(axa
†
y − a†xay) |0, 1〉 = i~(0−

√
0 + 1

√
1 |1, 0〉) = −i~ |1, 0〉 (57)

From this, we can easily obtain the matrix representation of L̂z in the B basis:

L̂z =̇ i~

0 0 0
0 0 1
0 −1 0

 (58)

Immediately we see that L̂z has an eigenvalue of 0 for the same space in which the eigenvalue of
Ĥ is ~ω, i.e., the space spanned by |0, 0〉. The remaining subspace is degenerate for Ĥ, so any
linear combination of kets from this subspace will also be an eigenket for Ĥ. This means that
when we find the eigenkets of L̂z for this subspace, we will have found simultaneous eigenkets
of Ĥ and L̂z.

So we just have to diagonalize the 2× 2 submatrix:(
0 i~
−i~ 0

)
(59)
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This is a matrix we’ve seen before, and will probably see again. Let’s find its eigenvalues:

0 = det
(
λ −i~
i~ λ

)
(60)

= λ2 − ~2 (61)
= (λ− ~)(λ+ ~) (62)

So the eigenvalues are ±~.

Let’s find the eigenvectors for each eigenvalue. First, for λ = +~:(
0
0

)
=
(

~ −i~
i~ ~

)(
x1

x2

)
=⇒ −ix1 = x2 =⇒

(
1√
2

−i√
2

)
(63)

And for λ = −~: (
0
0

)
=
(
−~ −i~
i~ −~

)(
x1

x2

)
=⇒ ix1 = x2 =⇒

(
1√
2

i√
2

)
(64)

So putting all of these together, and labelling the simultaneous eigenkets according to first the
eigenvalue of Ĥ and then the eigenvalue of L̂z, our final set of simultaneous eigenkets is:|~ω, 0〉 =

1
0
0

 , |2~ω,+~〉 =

 0
1√
2

i√
2

 , |2~ω,−~〉 =

 0
1√
2

−i√
2

 (65)

(c) I will find the time-dependent expectation values by first determining a matrix representation
for the operators, the finding the time-dependent state, and then putting those together to get
the expectation values. You could also do this whole problem in bra-ket notation, but why
write out that mess?

First, let’s find the matrix representation for x̂ =
√

~
2mω (a†x + ax).√

~
2mω

〈
n′x, n

′
y

∣∣a†x + ax

∣∣nx, ny

〉
=

√
~

2mω
(〈
n′x, n

′
y

∣∣a†x∣∣nx, ny

〉
+
〈
n′x, n

′
y

∣∣ax

∣∣nx, ny

〉)
(66)

=

√
~

2mω
(√
nx + 1δn′

x,nx+1 +
√
nxδn′

x,nx−1

)
δn′

y,ny
(67)

In the subspace of interest, represented in the B basis, we have:

x̂ =̇

√
~

2mω

0 1 0
1 0 0
0 0 0

 (68)

Similarly, we can show that the matrix representation of ŷ in this basis is

ŷ =̇

√
~

2mω

0 0 1
0 0 0
1 0 0

 (69)
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With the matrices determined, let’s find the time dependent state:

|ψ(t)〉 = eiĤt/~
(

1
2

(√
2 |0, 0〉+ eiα |1, 0〉+ eiβ |0, 1〉

))
(70)

=
1
2

(√
2e−i(E0+E0)t/~ |0, 0〉+ eiαe−i(E1+E0)t/~ |1, 0〉+ eiβe−i(E0+E1)t/~ |0, 1〉

)
(71)

Remembering that E0 = 1
2~ω and E1 = 3

2~ω, we get:

|ψ(t)〉 =
1
2

(√
2e−i(2ω)t |0, 0〉+ ei(α−2ωt) |1, 0〉+ ei(β−2ωt) |0, 1〉

)
(72)

=
eiωt

2

(√
2 |0, 0〉+ ei(α−ωt) |1, 0〉+ ei(β−ωt) |0, 1〉

)
(73)

Now we can plug all these things together in order to get the expectation values:

〈x(t)〉 = 〈ψ(t)|x|ψ(t)〉 (74)

=̇
eiωt

2
(√

2 e−i(α−ωt) e−i(β−ωt)
)√ ~

2mω

0 1 0
1 0 0
0 0 0

 e−iωt

2

 √
2

ei(α−ωt)

ei(β−ωt)

 (75)

=

√
~

32mω
(√

2 e−i(α−ωt) e−i(β−ωt)
)ei(α−ωt)

√
2

0

 (76)

=

√
~

32mω

(√
2ei(α−ωt) +

√
2e−i(α−ωt) + 0

)
(77)

=
1
2

√
~
mω

cos(α− ωt) (78)

〈y(t)〉 = 〈ψ(t)|y|ψ(t)〉 (79)

=̇

√
~

32mω
(√

2 e−i(α−ωt) e−i(β−ωt)
)0 0 1

0 0 0
1 0 0

 √
2

ei(α−ωt)

ei(β−ωt)

 (80)

=

√
~

32mω
(√

2 e−i(α−ωt) e−i(β−ωt)
)ei(β−ωt)

0√
2

 (81)

=

√
~

32mω

(√
2ei(β−ωt) +

√
2e−i(β−ωt)

)
(82)

=
1
2

√
~
mω

cos(β − ωt) (83)

7



Figure 1: Parametric plots of the time dependent expectation values for α = 0 and various values
of β

Problem 3

(a) Let’s start out by recalling how to write each of these dot products in spherical coordinates:

〈µ · ẑ〉 = |µ|
〈
cos(θ̂)

〉
(84)

〈µ · x̂〉 = |µ|
〈
sin(θ̂) cos(φ̂)

〉
(85)

〈µ · ŷ〉 = |µ|
〈
sin(θ̂) sin(φ̂)

〉
(86)

Each of these is an expectation value with respect to the state |l,m〉. We’ll solve them by using
the fact that we know how to write the wavefunction for |l,m〉 in the (θ, φ) representation.
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Let’s start with 〈µ · x̂〉:

〈µ · x̂〉 = |µ|
〈
l,m

∣∣∣sin(θ̂) cos(φ̂)
∣∣∣l,m〉 (87)

= |µ|
∫ 2π

0

dφ
∫ π

0

dθ sin(θ)
〈
l,m

∣∣∣θ, φ〉〈θ, φ∣∣∣sin(θ̂) cos(φ̂)
∣∣∣l,m〉 (88)

= |µ|
∫ 2π

0

dφ
∫ π

0

dθ sin(θ) 〈l,m|θ, φ〉 sin(θ) cos(φ) 〈θ, φ|l,m〉 (89)

= |µ|
∫ 2π

0

dφ
∫ π

0

dθ sin2(θ) cos(φ)Y m
l
∗(θ, φ)Y m

l (θ, φ) (90)

= |µ|
∫ 2π

0

dφ
∫ π

0

dθ sin2(θ) cos(φ)Pm
l
∗(cos(θ))e−imφPm

l (cos(θ)eimφ (91)

= |µ|
∫ 2π

0

dφ cos(φ)︸ ︷︷ ︸
0

∫ π

0

dθ sin2(θ) |Pm
l (cos(θ))|2 (92)

= 0 (93)

The integral over φ is zero because the function being integrated, cos(φ), is periodic over the
interval of the integrand (2π).

Similarly, we can see that 〈µ · ŷ〉 is also zero, since sin(φ) is also 2π-periodic.

Now let’s calculate 〈µ · ẑ〉:

〈µ · ẑ〉 = |µ|
∫ 2π

0

dφ
∫ π

0

dθ sin(θ)Y m
l
∗(θ, φ) cos(θ)Y m

l (θ, φ) (94)

= |µ|
∫ 2π

0

dφ
∫ π

0

dθ sin(θ)Y m
l
∗(θ, φ) cos(θ)Y m

l (θ, φ) (95)

There are several ways of solving this integral. I’ll show two of them: first let’s use the recursion
relation given on the problem set. Ignoring the exact values of the constants (which won’t be
necessary to us), we can write the recursion relation as:

cos(θ)Y m
l (θ, φ) = k−Y

m
l−1(θ, φ) + k+Y

m
l+1(θ, φ) (96)

Plugging this into equation (95):

〈µ · ẑ〉 = |µ|
∫ 2π

0

dφ
∫ π

0

dθ sin(θ)Y m
l
∗(θ, φ)

(
k−Y

m
l−1(θ, φ) + k+Y

m
l+1(θ, φ)

)
(97)

= |µ|
(
k−

∫ 2π

0

dφ
∫ π

0

dθ sin(θ)Y m
l
∗(θ, φ)Y m

l−1(θ, φ)

+ k+

∫ 2π

0

dφ
∫ π

0

dθ sin(θ)Y m
l
∗(θ, φ)Y m

l+1(θ, φ)
)

(98)

= 0 (99)

The final equality comes about by invoking the orthogonality of the spherical harmonics (and
the fact that l 6= l ± 1).
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The other method to solve the integral in equation (95), which I think is a little more elegant,
is to make the change of variables x = cos(θ), which means that dx = dθ sin(θ). Starting
from equation (95):

〈µ · ẑ〉 = |µ|
∫ 2π

0

dφ
∫ π

0

dθ sin(θ) cos(θ) |Pm
l (cos(θ))|2 (100)

= −2π |µ|
∫ 1

−1

dxx |Pm
l (x)|2 (101)

= 0 (102)

Since Pm
l (x) is always either even or odd, |Pm

l (x)|2 is even, and the whole integrand is odd.
So the integral is zero.

So why are these all zero? Probably the easiest way to think of it is that since there is no
preferred direction for the molecules, their dipole moments are equally likely to point in any
direction. Therefore, the expectation value of the dipole moment is zero.

(b) Now we are to calculate the z-component of the dipole moment in a specific coherent super-
position state (instead of the general eigenstate from the previous part).

This is another example of a problem that can be done either with a lot of bra-ket notation or
by finding a matrix representation. As usual, I prefer the matrix representation. So let’s start
out by finding a matrix representation of cos(θ̂), which we’ll obtain by using (the corrected
form of) the recursion formula given in the problem:

〈
l′,m′

∣∣∣cos(θ̂)
∣∣∣l,m〉 =

〈
l′,m′

∣∣∣∣∣
√
l2 −m2

4l2 − 1

∣∣∣∣∣l − 1,m

〉
+

〈
l′,m′

∣∣∣∣∣
√

(l + 1)2 −m2

4(l + 1)2 − 1

∣∣∣∣∣l + 1,m

〉
(103)

=

(√
l2 −m2

4l2 − 1
δl′,l−1 +

√
(l + 1)2 −m2

4(l + 1)2 − 1
δl′,l+1

)
δm′,m (104)

Since all components of our initial state have m = 0, and the matrix elements of cos(θ̂) require
that ∆m = 0, we can look at just the m = 0 subspace.

Further, since the states |l,m〉 are eigenstates of the Hamiltonian, we know that even in the
time dependent case, only the energy eigenstates which contribute to the initial state will ever
be populated (the time evolution involves no coupling between energy eigenstates). So we can
reduce our system to the subspace spanned by |1, 0〉 and |2, 0〉. Writing the basis in that order,
we can represent cos(θ̂) as:

cos(θ̂) =̇

 0
√

22−0
4(22)−1√

(1+1)2−0
4(1+1)2−1 0

 =
2√
15

(
0 1
1 0

)
(105)

So let’s go ahead and find the expectation value at t = 0. In the same basis as above, this

10



gives us: 〈
ψ(t = 0)

∣∣∣µ · cos(θ̂)
∣∣∣ψ(t = 0)

〉
= |µ| 2√

15
1
2
(
1 1

)(0 1
1 0

)(
1
1

)
(106)

=
|µ|√
15

(
1 1

)(1
1

)
(107)

=
2 |µ|√

15
(108)

Now let’s get the time-dependent version of the our state. We know that El = Bl(l + 1) for
the rigid rotor, so:

|ψ(t)〉 = e−iĤt/~ 1√
2

(|1, 0〉+ |2, 0〉) (109)

=
1√
2

(
e−i(B(1)(2))t/~ |1, 0〉+ e−i(B(2)(3))t/~ |2, 0〉

)
(110)

=
1√
2

(
e−2iBt/~ |1, 0〉+ e−6iBt/~ |2, 0〉

)
(111)

With that, we can calculate the time dependent expectation value:

|µ|
〈
ψ(t)

∣∣∣cos(θ̂)
∣∣∣ψ(t)

〉
=

|µ|√
15

(
e2iBt/~ e6iB/~)(0 1

1 0

)(
e−2iBt/~

e−6iB/~

)
(112)

=
|µ|√
15

(
e2iBt/~ e6iB/~)(e−6iBt/~

e−2iB/~

)
(113)

=
|µ|√
15

(
e−4iBt/~ + e4iBt/~

)
(114)

=
2 |µ|√

15
cos
(

4B
~
t

)
(115)

When t = 0, this reduces to our previous result. That’s a goodd sign that we’re on the right
path.

Problem 4

(a) As always, the first task is to find the matrix representation of this Hamiltonian. We use the
basis in which L̂z is diagaonal because that tends to be the standard basis to use in quantum
mechanics.

Before giving a proper quantum mechanical derivation, I’d like to look at a classical picture
which should give us some guidance. Let’s remember that classically, the angular momentum
vector is the vector which represents the axis around which the system is rotating. So we can
think of the resulting coordinate system that same way we would think about simple vectors.
This problem asks us to rotate the system by 45◦. The resulting system is shown in figure 2,
where we mark the points where vectors along u and v have unit length.
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Figure 2: Classical vector picture of the rotation

From this picture, we can quickly obtain the results

û =
1√
2

(ẑ + x̂) (116)

v̂ =
1√
2

(ẑ − x̂) (117)

While this is suggestive, it is definitely not a fully quantum mechanical proof. Now let’s do
one of those.

We didn’t talk much about using angular momentum as the generator of rotation, but to
generate a rotation of π/4 about the y-axis, we use a trick similar to what we did previously
in a problem about translation. But first, let me prove two lemmas.

Lemma 1 (Recursion relation for even n-fold commutators). We intend to prove:

[Ly, Lx]2n = ~2nLx (118)

We will perform this proof by induction. First, we will prove the inductive step (that is, show
that if that is satisfied for n′ = n − 1, then it is also satisfied for n). Then we will show that
it is satisfied for n = 0, and therefore for all n > 0.

To show that if this is satisfied for n′ = n− 1, then it is satisfied for n, we simply assume that
it is satisfied for n− 1:

[Ly, Lx]2n =
[
Ly,

[
Ly [Ly, L− x]2n−2

]]
(119)

=
[
Ly,

[
Ly, ~2n−2Lx

]]
(120)

= ~2n−2 [Ly, [Ly, Lx]] (121)

= ~2n−2 [Ly, i~εyxzLz] (122)

= ~2n−2(−i~) [Ly, Lz] (123)

= ~2n−2(−i~)(i~εyzx)Lx (124)

= ~2n−2(~2)Lx (125)

= ~2nLx (126)

12



To show that this is, in fact, true for all values of n ≥ 0, we just need to show that it is true
for n = 0, which is trivial (since [Ly, Lx]0 = Lx).

Lemma 2 (Recursion relation for odd n-fold commutators). Now we will prove a similar result
for odd commutators:

[Ly, Lx]2n+1 = −i~2n+1Lz (127)

We’ll simplify the proof of this by using the result of the previous lemma.

[Ly, Lx]2n+1 =
[
Ly, [Ly, Lx]2n

]
(128)

=
[
Ly, ~2nLx

]
(129)

= ~2n(i~)εyxzLz (130)

= −i~2n+1Lz (131)

With those lemmas out of the way, let’s really start on this problem. First, remember that L̂u

is given by rotating L̂x by π/4 about the axis which corresponds to L̂y. So we can write it as:

L̂u = eiL̂y
π
4 /~Lxe

iL̂y
π
4 /~ (132)

Using the result from a previous problem set, this becomes:

L̂u =
∞∑

n=0

1
n!

(
iπ

4~

)n

[Ly, Lx]n (133)

=
∞∑

n=0

1
(2n)!

(
iπ

4~

)2n

[Ly, Lx]2n +
∞∑

n=0

1
(2n+ 1)!

(
iπ

4~

)2n+1

[Ly, Lx]2n+1 (134)

=
∞∑

n=0

1
(2n)!

(
iπ

4~

)2n

~2nL̂x +
∞∑

n=0

1
(2n+ 1)!

(
iπ

4~

)2n+1

(−i~2n+1)L̂z (135)

= L̂x

∞∑
n=0

1
(2n)!

(−1)n
(π

4

)2n

+ L̂z(−i)
∞∑

n=0

1
(2n+ 1)!

i (−1)n
(π

4

)2n+1

(136)

= L̂x

∞∑
n=0

1
(2n)!

(−1)n
(π

4

)2n

+ L̂z

∞∑
n=0

1
(2n+ 1)!

(−1)n
(π

4

)2n+1

(137)

= L̂x cos
(π

4

)
+ L̂z sin

(π
4

)
(138)

=
1√
2

(
L̂z + L̂x

)
(139)

Note how this compares to our classical solution for û. A similar process gives us L̂v:

L̂v =
1√
2

(
L̂z − L̂x

)
(140)

13



Now let’s use that to find the Hamiltonian in terms of L̂z and L̂x:

Ĥ =
ω0

~

(
L̂2

u − L̂2
v

)
(141)

=
ω0

~

((
1√
2
(L̂z + L̂x)

)2

−
(

1√
2
(L̂z − L̂x)

)2
)

(142)

=
ω0

2~

(
(L̂2

z + L̂zL̂x + L̂xL̂z + L̂2
x)− (L̂2

z − L̂zL̂x − L̂xL̂z + L̂2
x)
)

(143)

=
ω0

~

(
L̂zL̂x + L̂xL̂z

)
(144)

In order to get a matrix representation of this, we’ll need matrix representations of L̂z and L̂x

in the L̂z diagonal basis. While we’re at it, let’s go ahead and also get the matrix representation
of L̂y, which we’ll need later.

The matrix representation of L̂z in its diagonal basis is trivial:

L̂z =̇ ~

1 0 0
0 0 0
0 0 −1

 (145)

To calculate the matrix representations of L̂x and L̂y, we recall their definitions in terms of
the ladder operators:

L̂x =
1
2

(
L̂+ + L̂−

)
(146)

L̂y =
1
2i

(
L̂+ − L̂−

)
(147)

So really, we just need the matrix elements of the ladder operators. Using the definition given in
the problem set, we can quickly see that the ladder operators have the matrix representations:

L̂+=̇ ~
√

2

0 1 0
0 0 1
0 0 0

 (148)

L̂−=̇ ~
√

2

0 0 0
1 0 0
0 1 0

 (149)

Therefore, we have

L̂x =
~√
2

0 1 0
1 0 1
0 1 0

 (150)

L̂y =
~
i
√

2

 0 1 0
−1 0 1
0 −1 0

 (151)
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Returning to our Hamiltonian, we now have what we need to create its matrix representation,
based on equation (144):

Ĥ=̇
ω0

~
~2

√
2

1 0 0
0 0 0
0 0 −1

0 1 0
1 0 1
0 1 0

+

0 1 0
1 0 1
0 1 0

1 0 0
0 0 0
0 0 −1

 (152)

=
~ω0√

2

0 1 0
0 0 0
0 −1 0

+

0 0 0
1 0 −1
0 0 0

 (153)

=
~ω0√

2

0 1 0
1 0 −1
0 −1 0

 (154)

By now, you probably can already guess the eigenvalues and eigenvectors of this matrix. Just
in case you can’t, I’ll calculate them. Again. Defining a = ~ω0/

√
2:

0 = det

 λ −a 0
−a λ a
0 a λ

 (155)

= λ3 − 2a2λ (156)

= λ(λ− a
√

2)(λ+ a
√

2) (157)

So the possible eigenvalues are, in decreasing order, {~ω0, 0,−~ω0}. On to the eigenvectors.
First, |E1 = ~ω0〉:a√2 −a 0

−a a
√

2 a

0 a a
√

2

x1

x2

x3

 =

0
0
0

 =⇒

{
x2 =

√
2x1

x3 = x1 −
√

2x2

=⇒

{
x2 =

√
2x1

x3 = −x1

(158)

This gives us the normalized eigenket

|E1 = ~ω0〉 =

 1/2
1/
√

2
−1/2

 (159)

Now for the ket |E2 = 0〉: 0 −a 0
−a 0 a
0 a 0

x1

x2

x3

 =

0
0
0

 =⇒

{
x2 = 0
x3 = x1

(160)

From those equations, we obtain the normalized eigenket

|E2 = 0〉 =

1/
√

2
0

1/
√

2

 (161)
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Finally, we find the eigenket |E3 = −~ω0〉:−a√2 −a 0
−a −a

√
2 a

0 a −a
√

2

x1

x2

x3

 =

0
0
0

 =⇒

{
x2 = −

√
2x1

x3 = x1 +
√

2x2

=⇒

{
x2 = −

√
2x1

x3 = −x1

(162)

This gives us the normalized eigenket

|E3 = −~ω0〉 =

 1/2
−1/

√
2

−1/2

 (163)

Putting it all together, the energies and eigenkets are:|E1 = ~ω0〉 =

 1/2
1/
√

2
−1/2

 , |E2 = 0〉 =

1/
√

2
0

1/
√

2

 , |E3 = −~ω0〉 =

 1/2
−1/

√
2

−1/2

 (164)

(b) We’re given an initial state in terms of the eigenstates of L̂z, and asked to find its time
dependence. As always, we get the time dependence by operating the time evolution operator
on it. We also need to insert a sum of energy eigenstates.

|ψ(t)〉 = e−iĤt/~
∑

i

|Ei〉 〈Ei|ψ(0)〉 (165)

=
∑

i

e−iEit/~ |Ei〉 〈Ei|ψ(0)〉 (166)

= e−iω0t |E1〉 〈E1|ψ(0)〉+ e0 |E2〉 〈E2|ψ(0)〉+ eiω0t |E3〉 〈E3|ψ(0)〉 (167)

= e−iω0t

 1/2
1/
√

2
−1/2

(1/2 1/
√

2 −1/2
) 1/

√
2

0
−1/

√
2


+

1/
√

2
0

1/
√

2

(1/√2 0 1/
√

2
) 1/

√
2

0
−1/

√
2


+ eiω0t

 1/2
−1/

√
2

−1/2

(1/2 −1/
√

2 −1/2
) 1/

√
2

0
−1/

√
2

 (168)

= e−iω0t 1√
2

 1/2
1/
√

2
−1/2

+ 0 + eiω0t 1√
2

 1/2
−1/

√
2

−1/2

 (169)

=
1√
2

 1
2

(
e−iω0t + eiω0t

)
1√
2

(
e−iω0t − eiω0t

)
1
2

(
e−iω0t + eiω0t

)
 (170)

=

cos(ω0t)/
√

2
−i sin(ω0t)
cos(ω0t)/

√
2

 (171)
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Therefore the probabilities of measuring each state at a given time t is given by:

Prob(Lz = +~) =
1
2

cos2(ω0t) (172)

Prob(Lz = 0) = sin2(ω0t) (173)

Prob(Lz = −~) =
1
2

cos2(ω0t) (174)

(c) We found the matrix representations of all of these operators earlier in this problem (see
equation (145) for L̂z, equation (150) for L̂x, and equation (151) for L̂y). So we’ll just plug
those in to get our each time-dependent expectation value:〈

L̂x(t)
〉

=
〈
ψ(t)

∣∣∣L̂x

∣∣∣ψ(t)
〉

(175)

=
~√
2

(
cos(ω0t)/

√
2 i sin(ω0t) cos(ω0t)/

√
2
)0 1 0

1 0 1
0 1 0

cos(ω0t)/
√

2
−i sin(ω0t)
cos(ω0t)/

√
2

 (176)

=
~√
2

(
cos(ω0t)/

√
2 i sin(ω0t) cos(ω0t)/

√
2
)−i sin(ω0t)√

2 cos(ω0t)
−i sin(ω0t)

 (177)

=
i~
2

(
−1

2
cos(ω0t) sin(ω0t) + cos(ω0t) sin(ω0t)−

1
2

cos(ω0t) sin(ω0t)
)

(178)

= 0 (179)

〈
L̂y(t)

〉
=
〈
ψ(t)

∣∣∣L̂y

∣∣∣ψ(t)
〉

(180)

=
~
i
√

2

(
cos(ω0t)/

√
2 i sin(ω0t) cos(ω0t)/

√
2
) 0 1 0

−1 0 1
0 −1 0

cos(ω0t)/
√

2
−i sin(ω0t)
cos(ω0t)/

√
2


(181)

=
~
i
√

2

(
cos(ω0t)/

√
2 i sin(ω0t) cos(ω0t)/

√
2
)−i sin(ω0t)

0
i sin(ω0t)

 (182)

= 0 (183)

〈
L̂z(t)

〉
=
〈
ψ(t)

∣∣∣L̂z

∣∣∣ψ(t)
〉

(184)

= ~
(
cos(ω0t)/

√
2 i sin(ω0t) cos(ω0t)/

√
2
)1 0 0

0 0 0
0 0 −1

cos(ω0t)/
√

2
−i sin(ω0t)
cos(ω0t)/

√
2

 (185)

= ~
(
cos(ω0t)/

√
2 i sin(ω0t) cos(ω0t)/

√
2
) cos(ω0t)/

√
2

0
− cos(ω0t)/

√
2

 (186)

= 0 (187)
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So the expectation value 〈L〉 is time-independent — there is no motion. To paraphrase Fermat,
“I have a truly marvellous explanation for this which this page is too narrow to contain.” If
you want to hear it, ask me.
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