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Problem 1

First let’s work on writing out the Hamiltonian in a useful form. Defining k = e2

4πε0
, we know our

Hamiltonian is

H = − ~2

2m
∇2

1 − k
2
r1
− ~2

2m
∇2

2 − k
2
r2

+
k

r12
(1)

By adding and subtracting terms of the form kZ
′

r , we obtain

H = − ~2

2m
∇2

1 − k
Z ′

r1
+ k

Z ′ − 2
r1

− ~2

2m
∇2

2 − k
Z ′

r2
+ k

Z ′ − 2
r2

+
k

r12
(2)

= HZ′,1 +HZ′,2 + k

(
Z ′ − 2
r1

+
Z ′ − 2
r2

+
1
r12

)
(3)

where HZ′,n is the Hamiltonian for the hydrogenic ion with electron n and nuclear charge of Z ′.
Fortunately, we just happen to have chosen our trial wavefunction to be the product of the two
hydrogenic wavefunction of nuclear charge Z ′. So |ψtrial〉 = |ψZ′,1〉 |ψZ′,2〉.

We want to calculate the energy as a function of the parameter Z ′. So we plug the Hamiltonian
into our trial wavefunction:

E(Z ′) = 〈ψtrial|H|ψtrial〉 / 〈ψtrial|ψtrial〉 (4)

=
〈
ψZ′,1

∣∣∣∣〈ψZ′,2

∣∣∣∣HZ′,1 +HZ′,2 + k

(
Z ′ − 2
r1

+
Z ′ − 2
r2

+
1
r12

)∣∣∣∣ψZ′,2

〉∣∣∣∣ψZ′,1

〉
(5)

= 〈ψZ′,1|HZ′,1|ψZ′,1〉+ 〈ψZ′,2|HZ′,2|ψZ′,2〉+ k(Z ′ − 2)
〈
ψZ′,1

∣∣∣∣ 1
r1

∣∣∣∣ψZ′,1

〉
+ k(Z ′ − 2)

〈
ψZ′,2

∣∣∣∣ 1
r2

∣∣∣∣ψZ′,2

〉
+ k

〈
ψZ′,1ψZ′,2

∣∣∣∣ 1
r12

∣∣∣∣ψZ′,1ψZ′,2

〉
(6)

We’ve been able to simplify this far by seeing that some of the terms only depend on one of the elec-
tron coordinates (so the other part of the trial wavefunction, being normalized, doesn’t contribute).
Since the wavefunctions for each electron have the same term, the two integrals

〈
ψZ′
∣∣ 1
r

∣∣ψZ′
〉

are the
same, regardless of the subscripts 1 and 2. So we can combine them. We can also now use the fact
that our wavefunctions are eigenfunctions for the one-electron hydrogenic Hamiltonians HZ′ , which
will also be equal to one another. So our energy function is now

E(Z ′) = 2EZ′ + 2k(Z ′ − 2)
〈
ψZ′

∣∣∣∣1r
∣∣∣∣ψZ′

〉
+ k

〈
ψZ′,1ψZ′,2

∣∣∣∣ 1
r12

∣∣∣∣ψZ′,1ψZ′,2

〉
(7)
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So let’s calculate each of these things.
First, we just change e2 into Z ′e2 in the hydrogen solution to get the hydrogenic solution (re-

member not to forget how e2 is involved in the definition of a0!). That gives us

EZ′ = −Z
′2k

2a0
(8)

That was easy enough. Now let’s do the one-electron integrals. The angular integrals immediately
gives us 4π (note that the function in the problem is normalized over all space, not just over r ∈ R+).〈

ψZ′

∣∣∣∣1r
∣∣∣∣ψZ′

〉
= 4π

∫
R+

dr r2
(

1√
π

(
Z ′

a0

)3/2

e−Z
′r/a0

)
1
r

(
1√
π

(
Z ′

a0

)3/2

e−Z
′r/a0

)
(9)

= 4
(
Z ′

a0

)3 ∫
R+

dr re−2Z′r/a0 (10)

= 4
(
Z ′

a0

)3 ( a0

2Z ′
)2

(11)

=
Z ′

a0
(12)

where the integration can be done by parts or by looking it up in a table (or by using a CAS).
The last integral is not so fun. The first trick is to get the term 1

r12
into a useful form. There are

several approaches; I’m going to use one which may not be the fastest, but requires the least typing
on my part (because I can steal it wholesale from other sources).

I’ll just jump to the useful form we’ll have:

1
r12

=
∞∑
l=0

l∑
m=−l

4π
2l + 1

rl<
rl+1
>

Y ml (θ1, φ1)Y ml
∗(θ2, φ2) (13)

If you want to see how to get this, there’s a (half) derivation by those geniuses at hyperblazer.net
— http://www.hyperblazer.net/teaching/MS07x31 details.pdf for the explanation.

From there, it is just a matter of doing the integral. I’m going to switch notation, so Z ′ becomes
Z. Also, “the book” will refer to McQuarrie and Simon’s PChem book. Not that I’m copying and
pasting from the solution to M&S 7-31 that I wrote last fall when I was a GSI for 120a. Not at all.

As the problem suggests, we’ll just do the integral from 7.50:

E(1) =
e2

4πε0

∫∫
dr1 dr2 ψ

∗
1s(r1)ψ∗1s(r2)

1
r12

ψ1s(r1)ψ1s(r2)

Plugging in 1/r12 from the problem we obtain:

E(1) =
e2

4πε0

∫∫
dr1 dr2 ψ

∗
1s(r1)ψ∗1s(r2)

∞∑
l=0

l∑
m=−l

4π
2l + 1

rl<
rl+1
>

Y ml (θ1, φ1)Y ml
∗(θ2, φ2)ψ1s(r1)ψ1s(r2)

Now, we know that the wavefunction ψ1s(ri) = R10(ri)Y 0
0 (θi, φi), and that the volume element

dri = dri r2i dθ sin(θ)dφ . To simplify our notation, use the shorthand Ωi ≡ (θi, φi) and dΩi ≡
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dθi sin(θi)dφi .

E(1) =
e2

4πε0

∫
dr1 r12R∗10(r1)R10(r1)

∫
dr2 r22R∗10(r2)R10(r2)

∞∑
l=0

l∑
m=−l

4π
2l + 1

rl<
rl+1
>

×
∫

dΩ1 Y
0
0
∗
(Ω1)︸ ︷︷ ︸

ψ∗
1s(r1)

Y 0
0 (Ω1)︸ ︷︷ ︸
ψ1s(r1)

Y ml (Ω1)︸ ︷︷ ︸
1/r12

∫
dΩ2 Y

0
0
∗
(Ω2)︸ ︷︷ ︸

ψ∗
1s(r2)

Y 0
0 (Ω2)︸ ︷︷ ︸
ψ1s(r2)

Y ml
∗(Ω2)︸ ︷︷ ︸

1/r12

where the underbraces show you where each term came from. Now we’re going to take advantage
of the fact that we know what Y 0

0 is. In fact, since Y 0
0 is constant (as is Y 0

0
∗), we’re going to take

one of them out of each integral. We’ll also take the angular dependence off of the one outside the
integral.

E(1) =
e2

4πε0

∫
dr1 r12R∗10(r1)R10(r1)

∫
dr2 r22R∗10(r2)R10(r2)

∞∑
l=0

l∑
m=−l

4π
2l + 1

rl<
rl+1
>

×
(
Y 0

0

∫
dΩ1 Y

0
0
∗
(Ω1)Y ml (Ω1)

)(
Y 0

0
∗
∫

dΩ2 Y
m
l
∗(Ω2)Y 0

0 (Ω2)
)

Now to show why we only took one of the Y 0
0 factors out. We know that the spherical harmonics

are orthonormal. That means that
∫

dΩY ml
∗(Ω)Y m

′

l′ (Ω) = δl,l′δm,m′ . (Take a look at Drew’s Delta
Functions paper in the Extra Study Aids section if you don’t remember how the Kronecker delta
works.) Basically, this means that the whole thing will be zero unless l = l′ and m = m′. This
restriction allows us to “pick out” values from the sums (specifically, we pick out the values where
l = 0 and m = 0.

E(1) =
e2

4πε0

∫
dr1 r12R∗10(r1)R10(r1)

∫
dr2 r22R∗10(r2)R10(r2)

∞∑
l=0

l∑
m=−l

4π
2l + 1

rl<
rl+1
>

× Y 0
0 δ0,lδ0,mY

0
0
∗
δ0,lδ0,m

=
e2

4πε0

∫
dr1 r12R∗10(r1)R10(r1)

∫
dr2 r22R∗10(r2)R10(r2)

∞∑
l=0

4π
2l + 1

rl<
rl+1
>

Y 0
0 Y

0
0
∗
δ0,l

Now we’ll use the fact that Y 0
0 = 1√

4π
.

=
e2

4πε0

∫
dr1 r12R∗10(r1)R10(r1)

∫
dr2 r22R∗10(r2)R10(r2)

∞∑
l=0

1
2l + 1

rl<
rl+1
>

δ0,l

=
e2

4πε0

∫
dr1 r12R∗10(r1)R10(r1)

∫
dr2 r22R∗10(r2)R10(r2)

1
(2)(0) + 1

r0<
r0+1
>

=
e2

4πε0

∫
dr1 r12R∗10(r1)R10(r1)

∫
dr2 r22R∗10(r2)R10(r2)

1
r>

The last thing we have to do is plug in forR10(ri). The problem set gives us ψ1s(ri) =
√

Z3

a03π e
−Zri/a0 .

As we pointed out earlier, ψ1s(ri) = R10(ri)Y 0
0 (θi, φi), which means thatR10(ri) = ψ1s(ri)/Y

0
0 (θi, φi).
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We also mentioned earlier that Y 0
0 = 1√

4π
. This gives us:

R10 =

√
4Z3

a0
3
e−Zri/a0

Plugging that into our expression for E(1), we find

E(1) =
e2

4πε0
16Z6

a0
6

∫
dr1 r21e

−2Zr1/a0

∫
dr2 r22

e−2Zr2/a0

r>

which is the equation at the bottom of page 271. One thing that should be made clear before we
proceed is that r> is not a constant. When r1 < r2, r> = r2. When r2 < r1, r> = r1. This means
that the two integrals are actually nested, not multiplying each other.

So to get to the first equation on page 272, we’ll split the integral r2 into two integrals — one
that goes from 0 to r1, and one that goes from r1 to ∞. So we have:

E(1) =
e2

4πε0
16Z6

a0
6

∫
dr1 r21e

−2Zr1/a0

(∫ r1

0

dr2 r22
e−2Zr2/a0

r>
+
∫ ∞
r1

dr2 r22
e−2Zr2/a0

r>

)
In the first integral in the sum, r2 is always less than r1, which means that r> = r1. In the second
integral in the sum, r2 is always greater than r1. This means that r> = r2. So plugging in the
appropriate values for r> in each case, we obtain

E(1) =
e2

4πε0
16Z6

a0
6

∫
dr1 r21e

−2Zr1/a0

(∫ r1

0

dr2 r22
e−2Zr2/a0

r1
+
∫ ∞
r1

dr2 r22
e−2Zr2/a0

r2

)
=

e2

4πε0
16Z6

a0
6

(∫
dr1 r1e−2Zr1/a0

∫ r1

0

dr2 r22e
−2Zr2/a0 +

∫
dr1 r21e

−2Zr1/a0

∫ ∞
r1

dr2 r2e−2Zr2/a0

)
This is, of course, the first equation on page 272. To get to our next milestone, the second equation
on page 272, we start doing some integrals. First note that the integrals are still nested: the bounds
of the inner integral (over r2) depend on the variable of integration of the outer integral (over r1).
So we’ll have to solve the integrals over r2 first. All of these integrals can be done exactly using
integration by parts, and if trapped with these integrals on a desert island, you should be able to
solve them that way. That said, I’m not on a desert island, so I have the options of looking them
up in a table of integrals or using a computer algebra program such as Mathematica (expensive) or
Maxima (free).

According to Maxima,∫ r1

0

dr2 r22e
−2Zr2/a0 =

1
4Z3

(
a0

3 −
(
2a0r

2
1Z

2 + 2a0
2r1Z + a0

3
)
e−2Zr1/a0

)
and ∫ ∞

r1

dr2 r2e−2Zr2/a0 =
1

4Z2

(
2a0r1Z + a0

2
)
e−2Zr1/a0
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Plugging those into our expression above, we find

E(1) =
e2

4πε0
16Z6

a0
6

(∫
dr1 r1e−2Zr1/a0

1
4Z3

(
a0

3 −
(
2a0r

2
1Z

2 + 2a0
2r1Z + a0

3
)
e−2Zr1/a0

)
+
∫

dr1 r21e
−2Zr1/a0

1
4Z2

(
2a0r1Z + a0

2
)
e−2Zr1/a0

)
=

e2

4πε0
16Z6

a0
6

(∫
dr1 r1e−2Zr1/a0

a0
3

4Z3

(
1−

(
2r21Z

2

a0
2

+
2r1Z
a0

+ 1
)
e−2Zr1/a0

)
+
∫

dr1 r21e
−2Zr1/a0

a0
3

4Z3

Z

a0

(
2r1Z
a0

+ 1
)
e−2Zr1/a0

)
=

e2

4πε0
4Z3

a0
3

(∫
dr1 r1e−2Zr1/a0

(
1−

(
2r21Z

2

a0
2

+
2r1Z
a0

+ 1
)
e−2Zr1/a0

)
+
Z

a0

∫
dr1 r21e

−2Zr1/a0

(
2r1Z
a0

+ 1
)
e−2Zr1/a0

)
This is equivalent to the second equation on page 272 of the book. Now we’re going to organize
our terms by the whether the integral includes e−2Zr1/a0 or e−4Zr1/a0 in order to obtain the third
equation.

E(1) =
e2

4πε0
4Z3

a0
3

(∫
dr1 e−2Zr1/a0

(
r1 −

(
2r31Z

3

a0
2

+
2r21Z
a0

+ r1

)
e−2Zr1/a0

)
+
∫

dr1 e−4Zr1/a0

(
2Z2r31
a0

2

Zr2

a0

))
=

e2

4πε0
4Z3

a0
3

(∫
dr1 r1e−2Zr1/a0 +

∫
dr1 e−4Zr1/a0

×
((

−2r31Z
2

a0
2

+
−2r21Z
a0

− r1

)
+
(

2r31Z
a0

2
+
Zr21
a0

)))
=

e2

4πε0
4Z3

a0
3

(∫
dr1 r1e−2Zr1/a0 +

∫
dr1 e−4Zr1/a0

(
−r21Z
a0

− r1

))
=

e2

4πε0
4Z3

a0
3

(∫
dr1 r1e−2Zr1/a0 −

∫
dr1 e−4Zr1/a0

Z3

a0
3

(
r21a0

2

Z2
+
r1a0

3

Z3

))
This is the third equation on page 272. From here, it’s just a matter of doing the integrals. These are
again the sort of integrals you could solve using integration by parts if you’re stuck doing integrals
in a prison and they refuse to give you a table of integrals. But since I’m not in prison (yet) I’ll use
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Maxima again.

E(1) =
e2

4πε0
4Z3

a0
3

(∫
dr1 r1e−2Zr1/a0 − Z

a0

∫
dr1 r21e

−4Zr1/a0 −
∫

dr1 r1e−4Zr1/a0

)
=

e2

4πε0
4Z3

a0
3

(
a0

2

4Z2
− Z

a0

a0
3

32Z3
− a0

2

16Z2

)
=

e2

4πε0
Z

a0

(
1− 1

8
− 1

4

)
=

5
8
Z

e2

4πε0a0

And that’s the answer!
And with that answer, which I was obviously excited to obtain, we can now plug everything back

into equation (7) (and go back to having numbered equations, and go back to Z ′):

E(Z ′) = 2

(
−Z

′2k

2a0

)
+ 2k(Z ′ − 2)

Z ′

a0
+ k

5
8
Z ′

a0
(14)

=
k

a0

(
−Z ′2 + 2Z ′2 − 4Z ′ +

5
8
Z ′
)

(15)

=
k

a0

(
Z ′

2 − 27
8
Z ′
)

(16)

Once you have the energy as a function of your parameter (as we do above) the variational
principle is very easy. We just take the derivative, find the point where it has a minimum, and plug
that value back into the energy function:

0 = E′(Z ′) (17)

=
k

a0

(
2Z ′ − 27

8

)
(18)

Z ′ =
27
16

= 1.6875 (19)

There’s only one extremum, so it darn well better be a minimum: by inspection, we can tell that
the second derivative is positive (everywhere) so any extremum must be a minimum.
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Now we plug that value of Z ′ into the function E(Z ′):

E

(
27
16

)
=

k

a0

((
27
16

)2

− 27
8

27
16

)
(20)

=
k

a0

((
27
16

)2

− 2
(

27
16

)2
)

(21)

= − k

a0

(
27
16

)2

(22)

= − k

2a0
2
(

27
16

)2

(23)

= (−13.6 eV)2
(

27
16

)2

(24)

= 77.4 eV (25)

where we have used the fact that k
2a0

is the ionization energy of hydrogen, approximately 13.6 eV.

Problem 2

First, we need to justify that the sudden approximation is valid. I’ll do that in a very handwaving
way: as shown on p. 477 of Shankar, the ratio of the timescale of the beta particle (relativistic
electron) escape to the timescale of motion by the captured electron is on the order of Zα, where α
is the fine structure constant, approximately 1/137. Since Z is of order 1, Zα remains small (less
than, say 0.1). So the sudden approximation is acceptable.1

The probability amplitude of being in the ground (1s) state of the helium ion in the sudden
approximation is given simply by the overlap:

Amplitude(1s, 3He+) =
〈
1s, 3He+

∣∣1s, 3H
〉

(26)

=
∫ 2π

0

dφ
∫ π

0

dθ sin(θ)Y 0
0
∗
(θ, φ)Y 0

0 (θ, φ)
∫

R+

dr r2R
3He+

10

∗
(r)R

3H
10 (r) (27)

=
∫

R+

dr r2
(

2
(

2
a0

)3/2

e−2r/a0

)(
2
(

1
a0

)3/2

e−r/a0

)
(28)

= 4
2
√

2
a0

3

∫
R+

dr r2e−3r/a0 (29)

=
8
√

2
a0

3

(
2! a0

3

33

)
(30)

=
16
√

2
27

(31)

1This is a horribly hand-waving approximation of a justification. But it’ll do for now.
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The integral over r can be calculated by integration by parts, or by finding the following (usually
after some massaging of gamma functions) in a table of integrals:∫

R+

dt tne−αt =
n!

αn+1
(32)

The overlap
〈
n = 16, l = 3,m = 0; 3He+

∣∣1s; 3H
〉

is zero because we can split of an angular over-
lap

〈
Y 0

3

∣∣Y 0
0

〉
and the orthogonality of spherical harmonics means that this is zero.

Problem 3

The first order transition will be:

Prob2p←1s =

∣∣∣∣∣− i

~

∫
R+

dt 〈2p|H(t)|1s〉 eiω21t

∣∣∣∣∣
2

(33)

=

∣∣∣∣∣1~
∫

R+

dt
〈
2p
∣∣∣E0qze

−(t/τ)2 cos(ωt)
∣∣∣1s〉 eiω21t

∣∣∣∣∣
2

(34)

=

∣∣∣∣∣1~
∫

R+

dt E0qe
−(t/τ)2 cos(ωt)eiω21t 〈2p|r cos(θ)|1s〉

∣∣∣∣∣
2

(35)

=

∣∣∣∣∣E0q

~
〈2p|r cos(θ)|1s〉

∫
R+

dt e−(t/τ)2+iω21t cos(ωt)

∣∣∣∣∣
2

(36)

=

∣∣∣∣∣E0q

~
〈2p|r cos(θ)|1s〉

∫
R+

dt e−(t/τ)2+iω21t
1
2
(
eiωt + e−iωt

)∣∣∣∣∣
2

(37)

=

∣∣∣∣∣E0q

2~
〈2p|r cos(θ)|1s〉

∫
R+

dt
(
e−(t/τ)2+i(ω21+ω)t + e−(t/τ)2+i(ω21−ω)t

)∣∣∣∣∣
2

(38)

=
∣∣∣∣E0q

2~
〈2p|r cos(θ)|1s〉 τ

√
π
(
e−τ

2(ω21+ω) + e−τ
2(ω21−ω)

)∣∣∣∣2 (39)

To a very good approximation, we can drop the first term. This is because when ω21 ≈ ω, the first
term’s exponent becomes −2τω, whereas the term in the second term’s exponent becomes 0. When
exponentiated, this makes the second term much larger than the first term, so we can ignore the
first term. That gives us

Prob2p←1s =
∣∣∣∣E0q

2~
〈2p|r cos(θ)|1s〉 τ

√
πe−τ

2(ω21−ω)

∣∣∣∣2 (40)

Now let’s calculate that matrix element.

〈2p|r cos(θ)|1s〉 =

〈
R21Y

m
1

∣∣∣∣∣r
√

4π
3
Y 0

1

∣∣∣∣∣R10Y
0
0

〉
(41)
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Recalling that Y 0
0 = 1/

√
4π, a constant, we can take it out of the angular integral and invoke the

orthogonality of the spherical harmonics to require that the bra be
〈
R21Y

0
1

∣∣. With the angular
integral done, we have:

〈2p|r cos(θ)|1s〉 =

〈
R21

∣∣∣∣∣r 1√
4π

√
4π
3

∣∣∣∣∣R10

〉
(42)

=
∫

R+

dr r2R21
∗(r)r

1√
3
R10(r) (43)

=
1√
3

∫
R+

dr r3
(

1√
24a0

5
re−r/2a0

)(
2√
a0

3
e−r/a0

)
(44)

=
√

4
72a0

8

∫
R+

dr r4e−3/2a0 (45)

Now we use equation (32) from problem 2 (or do some messy integration by parts, but if I do that,
you won’t get to see this solution set before the exam):

〈2p|r cos(θ)|1s〉 =
1

3
√

2a0
4

4!
(3/2a0)

5 (46)

=
23 · 3 · 25a0

36
√

2
(47)

=
27
√

2a0

35
(48)

Now we plug this back into our expression (40).

Prob2p←1s =

∣∣∣∣∣E0q

2~
27
√

2a0

35
τ
√
πe−τ

2(ω21−ω)

∣∣∣∣∣
2

(49)

=
∣∣∣∣E0 q 213/2a0

√
π

35~
τe−τ

2(ω21−ω)

∣∣∣∣2 (50)

=
E0

2q2a0
2

~2

213π

310
τ2e−2τ2(ω21−ω) (51)

That’s the transition probability. Now, if ω is exactly resonant, then the exponent becomes zero
(because ω = ω21) and therefore the system scales quadratically with the timescale of the pulse.

From an intuitive level, this makes sense. We would certainly expect that a longer pulse gives
more probability of a transition! We also note that the probability scales in time the same way it
scales in intensity: if we increase E0, we also see quadratic scaling in the transition probability. This
seems reasonable to me!
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Problem 4

We’ll change x to z to use our normal z-polarized light reference. The main thing to calculate is the
matrix element, so let’s foccus on that to start:

〈N, p,m|z|1s〉 = 〈N, p,m|r cos(θ)|1s〉 (52)

=

〈
N, p,m

∣∣∣∣∣r
√

4π
3
Y 0

1

∣∣∣∣∣1s
〉

(53)

Remembering that the angular part of the 1s state is Y 0
0 , which is just a constant, we find that

the angular integral requires that 〈N, p,m| be 〈N, p, 0| (due to orthogonality of spherical harmonics)
and that the constant Y 0

0 = 1/
√

4π is all that is left. That gives us:

〈N, p, 0|z|1s〉 =
∫

R+

dr r2
1√
4π
r

√
4π
3
RN1

∗(r)R10(r) (54)

=
1√
3

∫
R+

dr r3RN1
∗(r)R10(r) (55)

In problem 3, we solved this integral for N = 2 and found that it gave us

〈2p,m = 0|z|1s〉 =
a0√
2

28

35
(56)

Now we’ll solve the integral for the case N = 3:

〈3, p, 0|z|1s〉 =
1√
3

∫
R+

dr r3R31
∗(r)R10(r) (57)

=
1√
3

∫
R+

dr r3
(

8
27
√

6a0
3

(
1− 1

6
r

a0

)
r

a0
e−r/3a0

)(
2√
a0

3

)
e−r/a0 (58)

=
(

2
3a0

)4 1√
2

∫
R+

dr r4
(

1− r

6a0

)
e−4/3a0 (59)

=
(

2
3a0

)4 1√
2

(∫
R+

dr r4e−4/3a0 − 1
6a0

∫
R+

dr r5e−4/3a0

)
(60)
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From here, we invoke that useful integral formula given in problem 2 (geez, I hope you people didn’t
do all of this by parts):

〈3, p, 0|z|1s〉 =
(

2
3a0

)4 1√
2

(
4!

(4/3a0)5
− 1

6a0

5!
(4/3a0)6

)
(61)

=
(

2
3a0

)4 1√
2

((
1− 5

6a0

3a0

4

)(
3a0

4

)5

4!

)
(62)

=
(

2
3a0

)4 24√
2

3
8

(
3a0

4

)5

(63)

=
a0√
2

24 · 32 · 35

34 · 210
(64)

=
a0√
2
· 27
64

(65)

We get the oscillator strengths by plugging this into the formula from the problem set. Note that
this formula has a dependence on the energy spacing, which we can get from the fact that En = 1

n2

for the hydrogen atom.
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