
Exercise 2.4

This is completely analogous with the derivation for Cp, but with enthalpy in
the place on energy.

We start off with an aside, which we’ll use later:(
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Knowing that, we basically follow the same argument that Chandler makes on
page 34.

The first-order fluctuations vanish in equilibrium systems. So we approxi-
mate the second-order fluctuations of the enthalpy in terms of entropy. That
gives us:
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where the last equation uses the fact that δS(1) = −δS(2). Now we insert Eq. (1)
and obtain
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Since stability requires that δ2H ≥ 0, and we have (δS(1))2 ≥ 0, that leaves us
with
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As Chandler notes, this must be true for any partitioning of the system, includ-
ing the case that one partition is infinitesimally small. That gives us
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which means that the temperature and the constant pressure heat capacity
must have the same sign. Since temperature is generally positive, that gives us
Cp ≥ 0.
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