
Exercise 4.10

Let’s start with Chandler’s soon-to-be-profitable expansion for the energy,

〈E〉 = −
∞∑
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∫ ∞
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dε
dF (ε)
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where I’ve used the parenthetical superscript of Φ as a derivative (for simplicity).
Now let’s turn to the derivative of the Fermi function. We can easily do that

analytically:
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)−1
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With that done, let’s follow Chandler’s suggestion and make the change of
variables x = β(ε− µ). This gives us:

dε =
dx

β
(3a)

ε =
x

β
+ µ (3b)

Finally, let’s make a brief observation about the derivative of the Fermi
function: as Chandler mentions (and shows in Fig. 4.3), it is highly localized
around µ0 — meaning that it is effectively zero everywhere that isn’t within a
couple kBT of the Fermi energy. Since we know the Fermi energy is many kBT
above zero energy, we know that at ε ≤ 0 we have dF (ε)/dε ≈ 0, and therefore
the whole integrand is approximately zero. This means that we can extend the
lower limit of integration to −∞ without changing the results.

Using that observation and plugging Eqs. (2) and (3) into Eq. (1) gives us:
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If we now use the observation that µ and µ0 are close at low temperature, this
simplifies further:

〈E〉 = −
∞∑
m=0

1

m!
Φ(m)(µ0)

∫ ∞
−∞

dx
ex

(1 + ex)2

(
x

β

)m
(6)
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This, of course, gives us our expansion in terms of powers of kBT ; the “con-
stants” Chandler mentions are

(constant)m =
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∫ ∞
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But what happens to the odd powers? Well, that’s why we extended our integral
to −∞. There are a couple of ways to show that the integrand is an odd function
for odd values of m (which results in the integral over all real numbers being
zero). For example, you could go back to the Fermi function, show that it is an
odd function shifted by constants in both dependent and independent variables,
meaning that its derivative is even (shifted in the dependent variable). But I
think it is a lot easier to just look at the functional form we have now. Define
g(x) as

g(x) ≡ ex

(1 + ex)2
=

ex

1 + 2ex + e2x
(9)

=
1

e−x + 2 + ex
(10)

It’s trivial to see that this is an even function; i.e., ∀x, g(x) = g(−x). Multiply
an even function by an odd function (any x2n+1 for integer n) and you get an
odd function. So the integral is zero unless m is even. Our final result is:
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which is just a more detailed way of writing Chandler’s result.
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